
 
 

Maths summer work for 

NEW Lower Sixth 

 

The content of this booklet is assumed prior knowledge for all of 

the Maths courses that run in the Sixth Form. It contains several 

algebra topics as well as trigonometry, which would have been 

covered in the GCSE Higher course. A firm grasp of this content is 

essential in order to be successful at Maths in the Sixth Form. 

 

You will be tested on this content within the first two weeks of 

starting in September. Other topics that will be on that test, which 

are also assumed prior knowledge, include indices, surds and 

inequalities.  

 

Contents 

Factorising expressions 

Rearranging equations 

Completing the square 

Solving quadratic equations by factorisation, completing the 

square and using quadratic formula 

Simultaneous equations by elimination and by substitution 

Straight line graphs 

Trigonometry: cosine rule and sine rule 

Area of non-right angled triangle  

  



 

Factorising expressions 
 

 A LEVEL LINKS 

 Scheme of work: 1b. Quadratic functions – factorising, solving, graphs and the discriminants 
 

Key points 

 Factorising an expression is the opposite of expanding the brackets. 

 A quadratic expression is in the form ax2 + bx + c, where a ≠ 0. 

 To factorise a quadratic equation find two numbers whose sum is b and whose product is ac. 

 An expression in the form x2 – y2 is called the difference of two squares. It factorises to 

(x – y)(x + y). 

 

Examples 

Example 1 Factorise 15x2y3 + 9x4y 

15x2y3 + 9x4y = 3x2y(5y2 + 3x2) The highest common factor is 3x2y. 

So take 3x2y outside the brackets and 

then divide each term by 3x2y to find 

the terms in the brackets 

 

Example 2 Factorise 4x2 – 25y2 

4x2 – 25y2  = (2x + 5y)(2x − 5y) This is the difference of two squares as 

the two terms can be written as 

(2x)2 and (5y)2 

 

Example 3 Factorise x2 + 3x – 10 

b = 3, ac = −10 

 

 

So x2 + 3x – 10 = x2 + 5x – 2x – 10 

 

 = x(x + 5) – 2(x + 5) 

 

 = (x + 5)(x – 2) 

1 Work out the two factors of 

ac = −10 which add to give b = 3  

(5 and −2) 

2 Rewrite the b term (3x) using these 

two factors 

3 Factorise the first two terms and the 

last two terms 

4 (x + 5) is a factor of both terms 

 

  



 

 

Example 4 Factorise 6x2 − 11x − 10 

b = −11, ac = −60 

 

So  

6x2 − 11x – 10 = 6x2 − 15x + 4x – 10 

 

 = 3x(2x − 5) + 2(2x − 5) 

 

 = (2x – 5)(3x + 2) 

1 Work out the two factors of 

ac = −60 which add to give b = −11 

(−15 and 4) 

2 Rewrite the b term (−11x) using 

these two factors 

3 Factorise the first two terms and the 

last two terms 

4 (2x − 5) is a factor of both terms 

 

Example 5 Simplify 

2

2

4 21

2 9 9

x x

x x

 

 
 

2

2

4 21

2 9 9

x x

x x

 

 
 

 

For the numerator: 

b = −4, ac = −21 

 

So 

x2 − 4x – 21 = x2 − 7x + 3x – 21 

 

 = x(x − 7) + 3(x − 7) 

 

 = (x – 7)(x + 3) 

 

For the denominator: 

b = 9, ac = 18 

 

So  

2x2 + 9x + 9 = 2x2 + 6x + 3x + 9 

 

 = 2x(x + 3) + 3(x + 3) 

 

 = (x + 3)(2x + 3) 

So  
2

2

4 21 ( 7)( 3)

( 3)(2 3)2 9 9

x x x x

x xx x

   


  
 

 = 
7

2 3

x

x




 

1 Factorise the numerator and the 

denominator 

 

 

2 Work out the two factors of 

ac = −21 which add to give b = −4 

(−7 and 3) 

3 Rewrite the b term (−4x) using these 

two factors 

4 Factorise the first two terms and the 

last two terms 

5 (x − 7) is a factor of both terms 

 

6 Work out the two factors of  

ac = 18 which add to give b = 9  

(6 and 3) 

 

7 Rewrite the b term (9x) using these 

two factors 

8 Factorise the first two terms and the 

last two terms 

9 (x + 3) is a factor of both terms 

 

10 (x + 3) is a factor of both the 

numerator and denominator so 

cancels out as a value divided by 

itself is 1 

 

  



 

Practice 

1 Factorise. 

 a 6x4y3 – 10x3y4 b 21a3b5 + 35a5b2 

 c 25x2y2 – 10x3y2 + 15x2y3 

2 Factorise 

 a x2 + 7x + 12 b x2 + 5x – 14 

 c x2 – 11x + 30 d x2 – 5x – 24 

 e x2 – 7x – 18 f x2 + x –20 

 g x2 – 3x – 40 h x2 + 3x – 28 

3 Factorise 

 a 36x2 – 49y2 b 4x2 – 81y2   

 c 18a2 – 200b2c2 

4 Factorise 

 a 2x2 + x –3 b 6x2 + 17x + 5 

 c 2x2 + 7x + 3 d 9x2 – 15x + 4 

 e 10x2 + 21x + 9  f 12x2 – 38x + 20 

5 Simplify the algebraic fractions. 

 a 
2

2

2 4x x

x x




  b 

2

2

3

2 3

x x

x x



 
 

 c 
2

2

2 8

4

x x

x x

 


 d 

2

2

5

25

x x

x




 

 e 
2

2

12

4

x x

x x

 


 f 

2

2

2 14

2 4 70

x x

x x



 
 

6 Simplify 

 a 
2

2

9 16

3 17 28

x

x x



 
 b 

2

2

2 7 15

3 17 10

x x

x x

 

 
 

 c 
2

2

4 25

10 11 6

x

x x



 
 d 

2

2

6 1

2 7 4

x x

x x

 

 
 

Extend 

7 Simplify 
2 10 25x x   

8 Simplify 
2 2

2

( 2) 3( 2)

4

x x

x

  


  

Hint 

Take the highest 

common factor 

outside the bracket. 



 

Answers 

1 a 2x3y3(3x – 5y) b 7a3b2(3b3 + 5a2) 

 c 5x2y2(5 – 2x + 3y) 

2 a (x + 3)(x + 4) b (x + 7)(x – 2) 

 c (x – 5)(x – 6) d (x – 8)(x + 3) 

 e (x – 9)(x + 2) f (x + 5)(x – 4) 

 g (x – 8)(x + 5) h (x + 7)(x – 4) 

3 a (6x – 7y)(6x + 7y) b (2x – 9y)(2x + 9y) 

 c 2(3a – 10bc)(3a + 10bc) 

4 a (x – 1)(2x + 3) b (3x + 1)(2x + 5) 

 c (2x + 1)(x + 3) d (3x – 1)(3x – 4) 

 e (5x + 3)(2x +3)  f 2(3x – 2)(2x –5) 

5 a 
2( 2)

1

x

x




  b 

1

x

x 
 

 c 
2x

x


 d 

5

x

x 
 

 e 
3x

x


 f 

5

x

x 
 

6 a 
3 4

7

x

x




 b 

2 3

3 2

x

x




 

 c 
2 5

2 3

x

x




 d 

3 1

4

x

x




 

7 (x + 5) 

8 
4( 2)

2

x

x




  

  



 

Rearranging equations 
 

 A LEVEL LINKS 

 Scheme of work: 6a. Definition, differentiating polynomials, second derivatives 

 Textbook: Pure Year 1, 12.1 Gradients of curves 
 

Key points 

 To change the subject of a formula, get the terms containing the subject on one side and 

everything else on the other side. 

 You may need to factorise the terms containing the new subject. 

Examples 

Example 1 Make t the subject of the formula v = u + at. 

v = u + at 

 

v − u = at 

v u
t

a


   

1 Get the terms containing t on one 

side and everything else on the other 

side. 

2 Divide throughout by a. 

 

Example 2 Make t the subject of the formula r = 2t − πt. 

r = 2t − πt 
 

 

r = t(2 − π) 

2

r
t





  

1 All the terms containing t are 

already on one side and everything 

else is on the other side. 

2 Factorise as t is a common factor. 

3 Divide throughout by 2 − π. 

 

Example 3 Make t the subject of the formula 
3

5 2

t r t
 . 

3

5 2

t r t
  

2t + 2r = 15t 

2r = 13t 

2

13

r
t    

1 Remove the fractions first by 

multiplying throughout by 10. 

2 Get the terms containing t on one 

side and everything else on the other 

side and simplify. 

3 Divide throughout by 13. 

 

 

 



 

Example 4 Make t the subject of the formula 
3 5

1

t
r

t





. 

3 5

1

t
r

t





 

r(t − 1) = 3t + 5 

rt − r = 3t + 5 

rt − 3t = 5 + r 

t(r − 3) = 5 + r 

5

3

r
t

r





  

1 Remove the fraction first by 

multiplying throughout by t − 1. 

2 Expand the brackets. 

3 Get the terms containing t on one 

side and everything else on the other 

side. 

4 Factorise the LHS as t is a common 

factor. 

5 Divide throughout by r − 3. 

Practice 

Change the subject of each formula to the letter given in the brackets. 

1 C = πd   [d] 2 P = 2l + 2w   [w] 3 D = 
S

T
   [T] 

4 
q r

p
t


    [t] 5 u = at – 

1

2
t   [t] 6 V = ax + 4x   [x] 

7 
7 7 2

2 3

y x y 
    [y] 8 

2 1

3

a
x

a





   [a] 9 

b c
x

d


    [d] 

10 
7 9

2

g
h

g





   [g] 11 e(9 + x) = 2e + 1   [e] 12 

2 3

4

x
y

x





   [x] 

13 Make r the subject of the following formulae. 

 a A = πr2 b 
34

3
V r  c P = πr + 2r d 

22

3
V r h  

14 Make x the subject of the following formulae. 

 a 
xy ab

z cd
  b 

2

4 3cx z

d py


  

15 Make sin B the subject of the formula 
sin sin

a b

A B
  

16 Make cos B the subject of the formula b2 = a2 + c2 – 2ac cos B. 

Extend 

17 Make x the subject of the following equations. 

 a ( ) 1
p

sx t x
q

    b 
2

3
( 2 ) ( )

p p
ax y x y

q q
     



 

Answers 

1 d = 
C


 2 

2

2

P l
w


  3 

S
T

D
  

4 
q r

t
p


  5 

2

2 1

u
t

a



 6 

4

V
x

a



 

7 y = 2 + 3x 8 
3 1

2

x
a

x





 9 

x

cb
d


  

10 
2 9

7

h
g

h





 11 

1

7
e

x



 12 

4 3

2

y
x

y





 

13 a 
A

r


  b 3
3

4

V
r


   

 c 
2

P
r





 d 

3

2

V
r

h
  

14 a 
abz

x
cdy

  b 
2

3

4

dz
x

cpy
  

15 
sin

sin
b A

B
a

  

16 
2 2 2

cos
2

a c b
B

ac

 
  

17 a 
q pt

x
q ps





 b 

3 2 (3 2 )

3 3

py pqy y q
x

p apq aq

 
 

 
 

 

  



 

 

Completing the square 
 

 A LEVEL LINKS 

 Scheme of work: 1b. Quadratic functions – factorising, solving, graphs and the discriminants 
 

Key points 

 Completing the square for a quadratic rearranges ax2 + bx + c into the form p(x + q)2 + r  

 If a ≠ 1, then factorise using a as a common factor. 

 

Examples 

Example 1 Complete the square for the quadratic expression x2 + 6x − 2 

x2 + 6x − 2 

 

= (x + 3)2 − 9 − 2 

 

= (x + 3)2 − 11 

1 Write x2 + bx + c in the form 
2 2

2 2

b b
x c

   
     

   
 

2 Simplify 

 

Example 2 Write 2x2 − 5x + 1 in the form p(x + q)2 + r 

2x2 − 5x + 1 

 

 

 

= 2 5
2 1

2
x x

 
  

 
 

 

= 

2 2
5 5

2 1
4 4

x
    

      
     

 

 

= 

2
5 25

2 1
4 8

x
 

   
 

 

 

 

 

= 

2
5 17

2
4 8

x
 

  
 

 

1 Before completing the square write 

ax2 + bx + c in the form 

2 b
a x x c

a

 
  

 
 

2 Now complete the square by writing 

2 5

2
x x  in the form 

2 2

2 2

b b
x

   
    

   
 

 

3 Expand the square brackets – don’t 

forget to multiply 

2
5

4

 
 
 

by the 

factor of 2 

4 Simplify 

  



 

Practice 

1 Write the following quadratic expressions in the form (x + p)2 + q 

 a x2 + 4x + 3 b x2 – 10x – 3 

 c x2 – 8x d x2 + 6x 

 e x2 – 2x + 7 f x2 + 3x – 2 

2 Write the following quadratic expressions in the form p(x + q)2 + r 

 a 2x2 – 8x – 16 b 4x2 – 8x – 16 

 c 3x2 + 12x – 9 d 2x2 + 6x – 8 

3 Complete the square. 

 a 2x2 + 3x + 6 b 3x2 – 2x 

 c 5x2 + 3x d 3x2 + 5x + 3 

 

Extend 

4 Write (25x2 + 30x + 12) in the form (ax + b)2 + c. 

  



 

Answers 

1 a (x + 2)2 – 1 b (x – 5)2 – 28 

 c (x – 4)2 – 16 d (x + 3)2 – 9 

 e (x – 1)2 + 6 f 

2
3 17

2 4
x

 
  

 
  

2 a 2(x – 2)2 – 24 b 4(x – 1)2 – 20 

 c 3(x + 2)2 – 21 d 

2
3 25

2
2 2

x
 

  
 

 

3 a 

2
3 39

2
4 8

x
 

  
 

 b 

2
1 1

3
3 3

x
 

  
 

 

 c 

2
3 9

5
10 20

x
 

  
 

 d 

2
5 11

3
6 12

x
 

  
 

 

4 (5x + 3)2 + 3 

  



 

Solving quadratic equations by 

factorisation 
 

 A LEVEL LINKS 

 Scheme of work: 1b. Quadratic functions – factorising, solving, graphs and the discriminants  
 

Key points 

 A quadratic equation is an equation in the form ax2 + bx + c = 0 where a ≠ 0. 

 To factorise a quadratic equation find two numbers whose sum is b and whose products is ac. 

 When the product of two numbers is 0, then at least one of the numbers must be 0. 

 If a quadratic can be solved it will have two solutions (these may be equal). 

Examples 

Example 1 Solve 5x2 = 15x 

5x2 = 15x 

 

5x2 − 15x = 0 

 

 

5x(x − 3) = 0 

 

So 5x = 0 or (x − 3) = 0 

 

 

Therefore x = 0 or x = 3 

1 Rearrange the equation so that all of 

the terms are on one side of the 

equation and it is equal to zero.  

Do not divide both sides by x as this 

would lose the solution x = 0. 

2 Factorise the quadratic equation.  

5x is a common factor. 

3 When two values multiply to make 

zero, at least one of the values must 

be zero. 

4 Solve these two equations. 

Example 2 Solve x2 + 7x + 12 = 0 

x2 + 7x + 12 = 0 

 

b = 7, ac = 12 

 

x2 + 4x + 3x + 12 = 0 

 

x(x + 4) + 3(x + 4) = 0 

 

(x + 4)(x + 3) = 0 

So (x + 4) = 0 or (x + 3) = 0 

 

 

Therefore x = −4 or x = −3 

1 Factorise the quadratic equation. 

Work out the two factors of ac = 12 

which add to give you b = 7.  

(4 and 3) 

2 Rewrite the b term (7x) using these 

two factors. 

3 Factorise the first two terms and the 

last two terms. 

4 (x + 4) is a factor of both terms. 

5 When two values multiply to make 

zero, at least one of the values must 

be zero.  

6 Solve these two equations. 

 

  



 

Example 3 Solve 9x2 − 16 = 0 

9x2 − 16 = 0 

(3x + 4)(3x – 4) = 0 

 

So (3x + 4) = 0 or (3x – 4) = 0 

 

4

3
x    or 

4

3
x   

1 Factorise the quadratic equation. 

This is the difference of two squares 

as the two terms are (3x)2 and (4)2. 

2 When two values multiply to make 

zero, at least one of the values must 

be zero. 

3 Solve these two equations. 

Example 4 Solve 2x2 − 5x − 12 = 0 

b = −5, ac = −24 

 

 

 

So 2x2 − 8x + 3x – 12 = 0 

 

2x(x − 4) + 3(x − 4) = 0 

 

(x – 4)(2x + 3) = 0 

So (x – 4) = 0 or (2x +3) = 0 

 

4x   or 
3

2
x    

1 Factorise the quadratic equation. 

Work out the two factors of ac = −24 

which add to give you b = −5.  

(−8 and 3) 

2 Rewrite the b term (−5x) using these 

two factors. 

3 Factorise the first two terms and the 

last two terms. 

4 (x − 4) is a factor of both terms. 

5 When two values multiply to make 

zero, at least one of the values must 

be zero.  

6 Solve these two equations. 

Practice 

1 Solve 

 a 6x2 + 4x = 0 b 28x2 – 21x = 0 

 c x2 + 7x + 10 = 0 d x2 – 5x + 6 = 0 

 e x2 – 3x – 4 = 0 f x2 + 3x – 10 = 0 

 g x2 – 10x + 24 = 0 h x2 – 36 = 0 

 i x2 + 3x – 28 = 0 j x2 – 6x + 9 = 0 

 k 2x2 – 7x – 4 = 0 l 3x2 – 13x – 10 = 0 

2 Solve 

 a x2 – 3x = 10 b x2 – 3 = 2x 

 c x2 + 5x = 24 d x2 – 42 = x 

 e x(x + 2) = 2x + 25 f x2 – 30 = 3x – 2 

 g x(3x + 1) = x2 + 15 h 3x(x – 1) = 2(x + 1) 

 

  

Hint 

Get all terms 

onto one side 

of the equation. 



 

Solving quadratic equations by 

completing the square 
 

 A LEVEL LINKS 

 Scheme of work: 1b. Quadratic functions – factorising, solving, graphs and the discriminants  
 

Key points 

 Completing the square lets you write a quadratic equation in the form p(x + q)2 + r = 0. 

Examples 

Example 5 Solve x2 + 6x + 4 = 0. Give your solutions in surd form. 

x2 + 6x + 4 = 0 

 

(x + 3)2 − 9 + 4 = 0 
 

(x + 3)2 − 5 = 0 

(x + 3)2 = 5 

 

x + 3 = 5  

 

x = 5 3   

 

So x = 5 3   or x = 5 3  

1 Write x2 + bx + c = 0 in the form 
2 2

0
2 2

b b
x c

   
      

   
 

2 Simplify. 

3 Rearrange the equation to work out 

x. First, add 5 to both sides. 

4 Square root both sides.  

Remember that the square root of a 

value gives two answers. 

5 Subtract 3 from both sides to solve 

the equation.  

6 Write down both solutions. 

Example 6 Solve 2x2 − 7x + 4 = 0. Give your solutions in surd form. 

2x2 − 7x + 4 = 0 

 

2 7
2 4

2
x x

 
  

 
 = 0 

 
2 2

7 7
2 4

4 4
x

    
      

     

 = 0 

 

 

 

 
2

7 49
2 4

4 8
x

 
   

 
 = 0 

2
7 17

2
4 8

x
 

  
 

 = 0 

 

1 Before completing the square write 

ax2 + bx + c in the form 

2 b
a x x c

a

 
  

 
 

 

2 Now complete the square by writing 

2 7

2
x x  in the form 

2 2

2 2

b b
x

a a

   
    

   
 

 

3 Expand the square brackets. 
 

 

4 Simplify. 

 

(continued on next page) 



 

2
7 17

2
4 8

x
 

  
 

 

 
2

7 17

4 16
x

 
  

 
 

7 17

4 4
x     

17 7

4 4
x     

So 
7 17

4 4
x    or 

7 17

4 4
x    

5 Rearrange the equation to work out 

x. First, add 
17

8
 to both sides. 

 

6 Divide both sides by 2. 
 

 

7 Square root both sides. Remember 

that the square root of a value gives 

two answers. 

8 Add 
7

4
 to both sides. 

 

9 Write down both the solutions. 

 

Practice 

3 Solve by completing the square. 

 a x2 – 4x – 3 = 0 b x2 – 10x + 4 = 0 

 c x2 + 8x – 5 = 0 d x2 – 2x – 6 = 0 

 e 2x2 + 8x – 5 = 0 f 5x2 + 3x – 4 = 0 

4 Solve by completing the square. 

 a (x – 4)(x + 2) = 5 

 b 2x2 + 6x – 7 = 0 

 c x2 – 5x + 3 = 0 

  

Hint 

Get all terms 

onto one side 

of the equation. 



 

Solving quadratic equations by using the 

formula 
 

 A LEVEL LINKS 

 Scheme of work: 1b. Quadratic functions – factorising, solving, graphs and the discriminants  
 

Key points 

 Any quadratic equation of the form ax2 + bx + c = 0 can be solved using the formula 

2 4

2

b b ac
x

a

  
   

 If b2 – 4ac is negative then the quadratic equation does not have any real solutions. 

 It is useful to write down the formula before substituting the values for a, b and c. 

Examples 

Example 7 Solve x2 + 6x + 4 = 0. Give your solutions in surd form. 

a = 1, b = 6, c = 4 

2 4

2

b b ac
x

a

  
  

 

 

26 6 4(1)(4)

2(1)
x

  
  

6 20

2
x

 
  

6 2 5

2
x

 
  

 

3 5x     

 

So 3 5x     or 5 3x    

1 Identify a, b and c and write down 

the formula.  

Remember that 2 4b b ac    is 

all over 2a, not just part of it. 

 

2 Substitute a = 1, b = 6, c = 4 into the 

formula. 

 

3 Simplify. The denominator is 2, but 

this is only because a = 1. The 

denominator will not always be 2. 

4 Simplify 20 . 

20 4 5 4 5 2 5      

5 Simplify by dividing numerator and 

denominator by 2. 

6 Write down both the solutions. 
 

 

  



 

Example 8 Solve 3x2 − 7x − 2 = 0. Give your solutions in surd form. 

a = 3, b = −7, c = −2 

2 4

2

b b ac
x

a

  
  

 

 

2( 7) ( 7) 4(3)( 2)

2(3)
x

     
  

7 73

6
x


  

So 
7 73

6
x


  or 

7 73

6
x


  

1 Identify a, b and c, making sure you 

get the signs right and write down 

the formula.  

Remember that 2 4b b ac    is 

all over 2a, not just part of it. 

2 Substitute a = 3, b = −7, c = −2 into 

the formula. 
 

3 Simplify. The denominator is 6 

when a = 3. A common mistake is 

to always write a denominator of 2. 

4 Write down both the solutions. 

Practice 

5 Solve, giving your solutions in surd form. 

 a 3x2 + 6x + 2 = 0 b 2x2 – 4x – 7 = 0 

6 Solve the equation x2 – 7x + 2 = 0 

 Give your solutions in the form 
a b

c


, where a, b and c are integers. 

7 Solve 10x2 + 3x + 3 = 5 

 Give your solution in surd form. 

 

Extend 

8 Choose an appropriate method to solve each quadratic equation, giving your answer in surd form 

when necessary. 

 a 4x(x – 1) = 3x – 2 

 b 10 = (x + 1)2 

 c x(3x – 1) = 10 

  

Hint 

Get all terms onto one 

side of the equation. 



 

Answers 

1 a x = 0 or x = 
2

3
   b x = 0 or x = 

3

4
 

 c x = –5 or x = –2 d x = 2 or x = 3 

 e x = –1 or x = 4 f x = –5 or x = 2 

 g x = 4 or x = 6 h x = –6 or x = 6 

 i x = –7 or x = 4 j x = 3 

 k x = 
1

2
  or x = 4 l x = 

2

3
  or x = 5 

2 a x = –2 or x = 5 b x = –1 or x = 3 

 c x = –8 or x = 3 d x = –6 or x = 7 

 e x = –5 or x = 5 f x = –4 or x = 7 

 g x = –3 or x = 2
1

2
 h x = 

1

3
  or x = 2 

3 a x = 2 + 7 or x = 2 – 7  b x = 5 + 21  or x = 5 – 21  

 c x = –4 + 21  or x = –4 – 21  d x = 1 + 7  or x = 1 – 7  

 e x = –2 + 6.5  or x = –2 – 6.5  f x = 
3 89

10

 
 or x = 

3 89

10

 
 

4 a x = 1 + 14  or x = 1 – 14  b x = 
3 23

2

 
 or x = 

3 23

2

 
 

 c x = 
5 13

2


 or x = 

5 13

2


 

5 a x = –1 + 
3

3
 or x = –1 – 

3

3
 b x = 1 + 

3 2

2
 or x = 1 – 

3 2

2
 

6 x = 
7 41

2


 or x = 

7 41

2


 

7 x = 
3 89

20

 
 or x = 

3 89

20

 
 

8 a x = 
7 17

8


 or x = 

7 17

8


 

 b x = –1 + 10  or x = –1 – 10  

 c x = –1
2

3
 or x = 2 

  



 

 

Solving linear simultaneous equations 

using the elimination method 
 

 A LEVEL LINKS 

 Scheme of work: 1c. Equations – quadratic/linear simultaneous  
 

Key points 

 Two equations are simultaneous when they are both true at the same time. 

 Solving simultaneous linear equations in two unknowns involves finding the value of each 

unknown which works for both equations. 

 Make sure that the coefficient of one of the unknowns is the same in both equations. 

 Eliminate this equal unknown by either subtracting or adding the two equations. 

Examples 

Example 1 Solve the simultaneous equations 3x + y = 5 and x + y = 1 

      3x + y = 5 

–      x + y = 1    

      2x       = 4 

So x = 2 

 

Using x + y = 1 

 2 + y = 1 

So y = −1 

 

Check: 

  equation 1: 3 × 2 + (−1) = 5   YES 

  equation 2: 2 + (−1) = 1         YES 

1 Subtract the second equation from 

the first equation to eliminate the y 

term. 

 

 

2 To find the value of y, substitute 

x = 2 into one of the original 

equations. 

 

3 Substitute the values of x and y into 

both equations to check your 

answers. 

Example 2 Solve x + 2y = 13 and 5x − 2y = 5 simultaneously. 

       x + 2y = 13 

+   5x − 2y =   5  

      6x         = 18 

So x = 3 

 

Using x + 2y = 13 

 3 + 2y = 13 

So y = 5 

 

Check: 

   equation 1: 3 + 2 × 5 = 13       YES 

  equation 2: 5 × 3 − 2 × 5 = 5   YES 

1 Add the two equations together to 

eliminate the y term. 

 

 

 

2 To find the value of y, substitute 

x = 3 into one of the original 

equations. 

 

3 Substitute the values of x and y into 

both equations to check your 

answers. 

 



 

 

Example 3 Solve 2x + 3y = 2 and 5x + 4y = 12 simultaneously. 

(2x + 3y = 2) × 4           8x + 12y =   8 

(5x + 4y = 12) × 3       15x + 12y = 36    

                                           7x          =  28 

 

So x = 4 

 

 

Using  2x  +  3y  = 2 

 2 × 4 + 3y = 2 

So y = −2 

 

Check: 

   equation 1: 2 × 4 + 3 × (−2) = 2    YES 

   equation 2: 5 × 4 + 4 × (−2) = 12  YES 

1 Multiply the first equation by 4 and 

the second equation by 3 to make 

the coefficient of y the same for 

both equations. Then subtract the 

first equation from the second 

equation to eliminate the y term. 

 

2 To find the value of y, substitute 

x = 4 into one of the original 

equations. 

 

3 Substitute the values of x and y into 

both equations to check your 

answers. 

 

Practice 

Solve these simultaneous equations. 

1 4x + y = 8 2 3x + y = 7 

 x + y = 5  3x + 2y = 5 

  

3 4x + y = 3 4 3x + 4y = 7 

 3x – y = 11   x – 4y = 5 

 

5 2x + y = 11 6 2x + 3y = 11 

 x – 3y = 9  3x + 2y = 4 

 

 

  



 

Solving linear simultaneous equations 

using the substitution method 
 

 A LEVEL LINKS 

 Scheme of work: 1c. Equations – quadratic/linear simultaneous 

 Textbook: Pure Year 1, 3.1 Linear simultaneous equations 
 

Key points 

 The subsitution method is the method most commonly used for A level. This is because it is 

the method used to solve linear and quadratic simultaneous equations. 

Examples 

Example 4 Solve the simultaneous equations y = 2x + 1 and 5x + 3y = 14 

5x + 3(2x + 1) = 14 

 

5x + 6x + 3 = 14 

11x + 3 = 14 

11x = 11 

So x = 1 

 

Using y = 2x + 1 

 y = 2 × 1 + 1 

So y = 3 

 

Check: 

   equation 1: 3 = 2 × 1 + 1           YES 

   equation 2: 5 × 1 + 3 × 3 = 14   YES 

1 Substitute 2x + 1 for y into the 

second equation. 

2 Expand the brackets and simplify. 

 

3 Work out the value of x. 

 

 

4 To find the value of y, substitute 

x = 1 into one of the original 

equations. 

 

5 Substitute the values of x and y into 

both equations to check your 

answers. 

Example 5 Solve 2x − y = 16 and 4x + 3y = −3 simultaneously. 

y = 2x − 16 

4x + 3(2x − 16) = −3 

 

4x + 6x − 48 = −3 

10x − 48 = −3 

10x = 45 

So x = 1
2

4   

Using y = 2x − 16 

     y = 2 × 1
2

4  − 16 

So y = −7 

 

Check: 

 equation 1: 2 × 1
2

4  – (–7) = 16      YES 

 equation 2: 4 ×  1
2

4  + 3 × (−7) = −3 YES 

1 Rearrange the first equation. 

2 Substitute 2x − 16 for y into the 

second equation. 

3 Expand the brackets and simplify. 

 

4 Work out the value of x. 

 

 

5 To find the value of y, substitute 

x = 1
2

4  into one of the original 

equations. 

 

6 Substitute the values of x and y into 

both equations to check your 

answers. 



 

Practice 

Solve these simultaneous equations. 

7 y = x – 4 8 y = 2x – 3 

 2x + 5y = 43  5x – 3y = 11 

9 2y = 4x + 5 10 2x = y – 2 

 9x + 5y = 22  8x – 5y = –11 

11 3x + 4y = 8 12 3y = 4x – 7 

 2x – y = –13  2y = 3x – 4 

 

13 3x = y – 1 14 3x + 2y + 1 = 0 

 2y – 2x = 3  4y = 8 – x 

 

Extend 

15 Solve the simultaneous equations 3x + 5y − 20 = 0 and 
3( )

2( )
4

y x
x y


  . 

  



 

Answers 

1 x = 1, y = 4 

2 x = 3, y = –2 

3 x = 2, y = –5 

4 x = 3, y = –
1

2
 

5 x = 6, y = –1 

6 x = –2, y = 5 

7 x = 9, y = 5 

8 x = –2, y = –7 

9 x = 
1

2
, y = 3

1

2
 

10 x = 
1

2
, y = 3 

11 x = –4, y = 5 

12 x = –2, y = –5 

13 x = 
1

4
, y = 1

3

4
 

14 x = –2, y = 2
1

2
 

15 x = –2
1

2
, y = 5

1

2
 

  



 

Straight line graphs 
 

 A LEVEL LINKS 

 Scheme of work: 2a. Straight-line graphs, parallel/perpendicular, length and area problems 
 

Key points 

 A straight line has the equation y = mx + c, where m is 

the gradient and c is the y-intercept (where x = 0). 

 The equation of a straight line can be written in the form 

ax + by + c = 0, where a, b and c are integers. 

 When given the coordinates (x1, y1) and (x2, y2) of two 

points on a line the gradient is calculated using the 

formula 2 1

2 1

y y
m

x x





  

Examples 

Example 1 A straight line has gradient 
1

2
  and y-intercept 3. 

Write the equation of the line in the form ax + by + c = 0. 

m = 
1

2
  and c = 3 

So y = 
1

2
 x + 3 

1

2
x + y – 3 = 0 

 

x + 2y − 6 = 0 

1 A straight line has equation 

y = mx + c. Substitute the gradient 

and y-intercept given in the question 

into this equation. 

2 Rearrange the equation so all the 

terms are on one side and 0 is on  

the other side.  

3 Multiply both sides by 2 to 

eliminate the denominator. 

 

Example 2 Find the gradient and the y-intercept of the line with the equation 3y − 2x + 4 = 0. 

3y − 2x + 4 = 0 

3y = 2x − 4 

2 4

3 3
y x    

Gradient = m = 
2

3
 

y-intercept = c = 
4

3
  

1 Make y the subject of the equation. 

 

2 Divide all the terms by three to get 

the equation in the form y = … 
 

3 In the form y = mx + c, the gradient 

is m and the y-intercept is c. 

 

  



 

Example 3 Find the equation of the line which passes through the point (5, 13) and has gradient 3. 

m = 3 

y = 3x + c 

 

 

13 = 3 × 5 + c 

 

13 = 15 + c 

c = −2 

y = 3x − 2 

1 Substitute the gradient given in the 

question into the equation of a 

straight line y = mx + c. 

2 Substitute the coordinates x = 5 and 

y = 13 into the equation. 

3 Simplify and solve the equation. 

 

4 Substitute c = −2 into the equation 

y = 3x + c 

 

Example 4 Find the equation of the line passing through the points with coordinates (2, 4) and (8, 7). 

1 2x  , 2 8x  , 1 4y   and 2 7y   

2 1

2 1

7 4 3 1

8 2 6 2

y y
m

x x

 
   

 
 

 

1

2
y x c    

1
4 2

2
c    

 c = 3 

1
3

2
y x   

1 Substitute the coordinates into the 

equation 2 1

2 1

y y
m

x x





 to work out 

the gradient of the line. 

2 Substitute the gradient into the 

equation of a straight line 

y = mx + c. 

3 Substitute the coordinates of either 

point into the equation. 

4 Simplify and solve the equation. 

5 Substitute c = 3 into the equation 

1

2
y x c   

 

Practice 

1 Find the gradient and the y-intercept of the following equations. 

 a y = 3x + 5 b y = 
1

2
 x – 7  

 c 2y = 4x – 3 d x + y = 5 

 e 2x – 3y – 7 = 0 f 5x + y – 4 = 0 

2 Copy and complete the table, giving the equation of the line in the form y = mx + c. 

Gradient y-intercept Equation of the line 

5 0  

–3 2  

4 –7  

Hint 

Rearrange the equations 

to the form y = mx + c 



 

3 Find, in the form ax + by + c = 0 where a, b and c are integers, an equation for each of the lines 

with the following gradients and y-intercepts. 

 a gradient 
1

2
 ,  y-intercept –7 b gradient 2,  y-intercept 0 

 c gradient 
2

3
,  y-intercept 4 d gradient –1.2,  y-intercept –2 

4 Write an equation for the line which passes though the point (2, 5) and has gradient 4. 

5 Write an equation for the line which passes through the point (6, 3) and has gradient 
2

3
  

6 Write an equation for the line passing through each of the following pairs of points. 

 a (4, 5),  (10, 17) b (0, 6),  (–4, 8) 

 c (–1, –7),  (5, 23) d (3, 10),  (4, 7) 

 

Extend 

7 The equation of a line is 2y + 3x – 6 = 0. 

Write as much information as possible about this line. 

  



 

Answers 

1 a m = 3, c = 5 b m = 
1

2
 , c = –7  

 c m = 2, c = 
3

2
  d m = –1, c = 5 

 e m = 
2

3
, c = 

7

3
 or –2

1

3
  f m = –5, c = 4 

2  

Gradient y-intercept Equation of the line 

5 0 y = 5x 

–3 2 y = –3x + 2 

4 –7 y = 4x –7 

3 a x + 2y + 14 = 0 b 2x – y = 0 

 c 2x – 3y + 12 = 0 d 6x + 5y + 10 = 0 

4 y = 4x – 3 

5 y = 
2

3
 x + 7 

6 a y = 2x – 3 b y = 
1

2
 x + 6 

 c y = 5x –2 d y = –3x + 19 

7 
3

3
2

y x   , the gradient is 
3

2
  and the y-intercept is 3. 

The line intercepts the axes at (0, 3) and (2, 0). 

Students may sketch the line or give coordinates that lie on the line such as 
3

1,
2

 
 
 

 or  4, 3 . 

 

 

  



 

Trigonometry: The cosine rule 
 

 A LEVEL LINKS 

 Scheme of work: 4a. Trigonometric ratios and graphs 

 Textbook: Pure Year 1, 9.1 The cosine rule 
 

Key points 

 a is the side opposite angle A. 

b is the side opposite angle B. 

c is the side opposite angle C. 

 

  

 You can use the cosine rule to find the length of a side when two sides and the included 

angle are given. 

 To calculate an unknown side use the formula 2 2 2 2 cosa b c bc A   . 

 

 Alternatively, you can use the cosine rule to find an unknown angle if the lengths of all three 

sides are given. 

 To calculate an unknown angle use the formula 
2 2 2

cos
2

b c a
A

bc

 
 . 

Examples 

Example 4 Work out the length of side w. 

  Give your answer correct to 3 significant figures. 

 

 

 

 

2 2 2 2 cosa b c bc A    

 
2 2 28 7 2 8 7 cos45w         

 

w2 = 33.804 040 51... 

w = 33.80404051  

w = 5.81 cm 

1 Always start by labelling the angles 

and sides. 

 

 

 

 

 

2 Write the cosine rule to find the 

side. 

3 Substitute the values a, b and A into 

the formula. 

4 Use a calculator to find w2 and  

then w. 

5 Round your final answer to 3 

significant figures and write the 

units in your answer. 



 

Example 5 Work out the size of angle θ. 

 Give your answer correct to 1 decimal place.  

 

 

 

 
2 2 2

cos
2

b c a
A

bc

 
  

2 2 210 7 15
cos

2 10 7


 


 
 

76
cos

140



  

θ = 122.878 349... 

 

θ = 122.9° 

1 Always start by labelling the angles 

and sides. 

 

 

 

 

2 Write the cosine rule to find the 

angle. 

3 Substitute the values a, b and c into 

the formula. 

4 Use cos−1 to find the angle. 

5 Use your calculator to work out  

cos–1(–76 ÷ 140). 

6 Round your answer to 1 decimal 

place and write the units in your 

answer. 

 

Practice 

6 Work out the length of the unknown side in each triangle. 

 Give your answers correct to 3 significant figures. 

 a    b  

 

 

 

 

 

 

 c    d 

 

  



 

7 Calculate the angles labelled θ in each triangle. 

 Give your answer correct to 1 decimal place. 

 a    b 

 

 

 

 

 

 

 c    d 

 

 

 

 

 

8 a Work out the length of WY. 

  Give your answer correct to  

  3 significant figures. 

 b Work out the size of angle WXY. 

  Give your answer correct to  

  1 decimal place. 

  



 

Trigonometry: The sine rule 
 

 A LEVEL LINKS 

 Scheme of work: 4a. Trigonometric ratios and graphs 

 Textbook: Pure Year 1, 9.2 The sine rule 
 

Key points 

 a is the side opposite angle A. 

b is the side opposite angle B. 

c is the side opposite angle C. 

 

 

 You can use the sine rule to find the length of a side when its opposite angle and another 

opposite side and angle are given. 

 To calculate an unknown side use the formula 
sin sin sin

a b c

A B C
  . 

 Alternatively, you can use the sine rule to find an unknown angle if the opposite side and 

another opposite side and angle are given. 

 To calculate an unknown angle use the formula 
sin sin sinA B C

a b c
  .  

Examples 

Example 6 Work out the length of side x. 

  Give your answer correct to 3 significant figures. 

 

 

 

 

sin sin

a b

A B
  

10

sin36 sin75

x


 
 

10 sin36

sin75
x

 



 

x = 6.09 cm 

1 Always start by labelling the angles 

and sides. 

 

 

 

 

 

 

2 Write the sine rule to find the side. 

 

3 Substitute the values a, b, A and B 

into the formula. 

 

4 Rearrange to make x the subject. 

5 Round your answer to 3 significant 

figures and write the units in your 

answer. 



 

Example 7 Work out the size of angle θ. 

 Give your answer correct to 1 decimal place. 

 

 

 
sin sinA B

a b
  

sin sin127

8 14

 
  

8 sin127
sin

14


 
  

θ = 27.2° 

1 Always start by labelling the angles 

and sides. 

 

 

 

2 Write the sine rule to find the angle. 

 

3 Substitute the values a, b, A and B 

into the formula. 

4 Rearrange to make sin θ the subject. 

5 Use sin−1 to find the angle. Round 

your answer to 1 decimal place and 

write the units in your answer. 

Practice 

9 Find the length of the unknown side in each triangle. 

 Give your answers correct to 3 significant figures. 

 

 a    b 

 

 

 

 

 

 

 

 c    d 

 

 

 

 

  

  



 

10 Calculate the angles labelled θ in each triangle. 

 Give your answer correct to 1 decimal place. 

 

 a    b 

 

 

 

 

 

 

 

 

 

 

 c    d 

 

 

 

 

 

 

11 a Work out the length of QS. 

  Give your answer correct to 3 significant figures. 

 b Work out the size of angle RQS. 

  Give your answer correct to 1 decimal place. 

  



 

Areas of non-right angled triangles 
 

 A LEVEL LINKS 

 Scheme of work: 4a. Trigonometric ratios and graphs 

 Textbook: Pure Year 1, 9.3 Areas of triangles 
 

Key points 

 a is the side opposite angle A. 

b is the side opposite angle B. 

c is the side opposite angle C. 

 The area of the triangle is 
1

sin
2

ab C . 

 

Examples 

Example 8 Find the area of the triangle.  

 

 

 

 

 

 

Area = 
1

sin
2

ab C  

Area = 
1

8 5 sin82
2
     

 

Area = 19.805 361... 

 

Area = 19.8 cm2 

1 Always start by labelling the sides 

and angles of the triangle. 

 

 

 

 

 

 

 

2 State the formula for the area of a 

triangle. 

3 Substitute the values of a, b and C 

into the formula for the area of a 

triangle. 

4 Use a calculator to find the area. 

 

5 Round your answer to 3 significant 

figures and write the units in your 

answer. 

  



 

Practice 

12 Work out the area of each triangle. 

 Give your answers correct to 3 significant figures. 

 a   b 

 

 

 

 

 c   

 

 

 

 

  

  

13 The area of triangle XYZ is 13.3 cm2. 

 Work out the length of XZ. 

 

 

 

 

Extend 

14 Find the size of each lettered angle or side. 

 Give your answers correct to 3 significant figures.  

 a  b 

 

 

Hint: 

Rearrange the formula to make a side the subject. 

Hint: 

For each one, decide whether 

to use the cosine or sine rule. 

 



 

 c  d 

 

 

 

15 The area of triangle ABC is 86.7 cm2. 

 Work out the length of BC. 

 Give your answer correct to 3 significant figures. 

  



 

Answers 

6 a 6.46 cm b 9.26 cm c 70.8 mm d 9.70 cm 

7 a 22.2° b 52.9° c 122.9° d 93.6° 

8 a 13.7 cm b 76.0° 

9 a 4.33 cm b 15.0 cm c 45.2 mm d 6.39 cm 

10 a 42.8° b 52.8° c 53.6° d 28.2° 

11 a 8.13 cm b 32.3° 

12 a 18.1 cm2 b 18.7 cm2 c 693 mm2 

13 5.10 cm 

14 a 6.29 cm b 84.3° c 5.73 cm d 58.8° 

15 15.3 cm 

 

 


